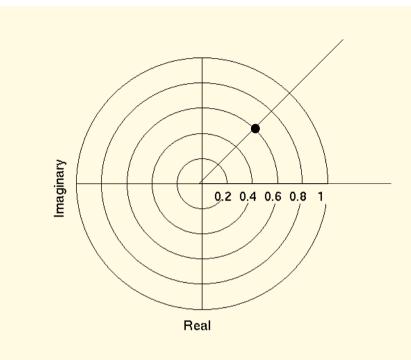
# RF IMPEDANCE AND THE SMITH CHART

JEREMY HALEY, WG9T

LONGMONT AMATEUR RADIO CLUB

**Longmont Amateur Radio Club** 


#### RESISTANCE, REACTANCE, AND IMPEDANCE

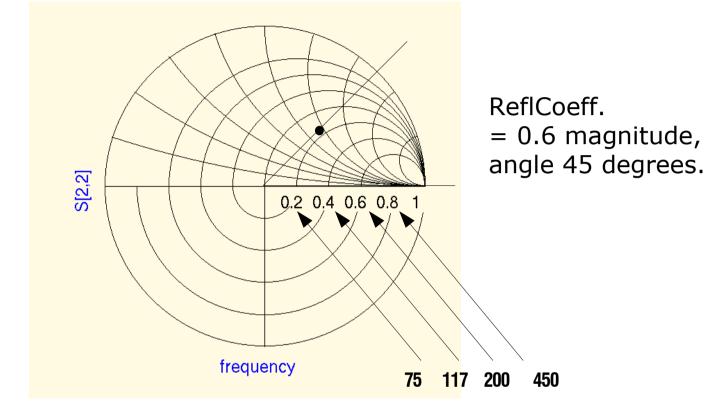
RESISTANCE Energy conversion to heat.

Capacitance: Energy storage in electric field. Inductance: Energy storage in magnetic field.

IMPEDANCERESISTANCE + REACTANCE

## POLAR PLOT OF REFLECTION COEFFICIENT



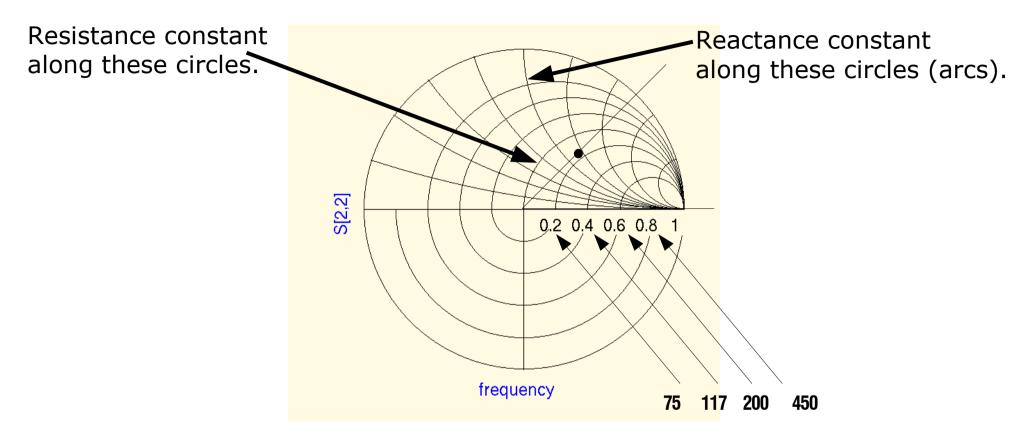

ReflCoeff. = 0.6 magnitude, angle 45 degrees.

Voltage Waves: forward and reflected relative to a fixed reference point (e.g. SWR meter in the shack).

Reflection Coefficient = (refl. voltage) / (fwd. voltage) [n.a.]

Voltages have amplitude [V] and phase angle [degrees].

#### **OVERLAY IMPEDANCE COORDINATES**



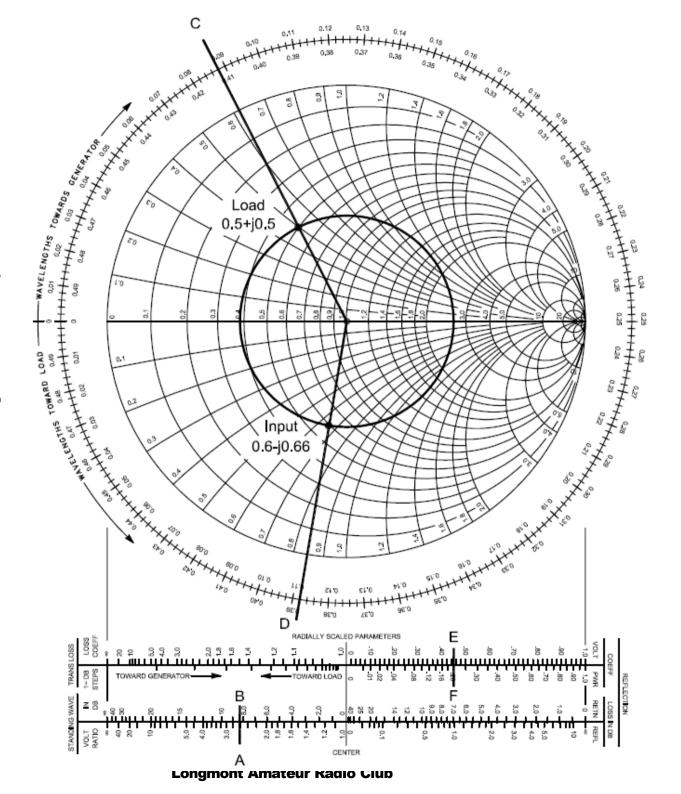

Equation relates impedance to reflection coefficient.

Z = Zref\*((1 + ReflCoeff.)/(1-ReflCoeff.)) [Ohm]

Reference impedance, Zref is typically 50 ohms.

#### **RESISTANCE & REACTANCE CIRCLES**




Upper half of impedance map: inductive reactance and resistance.

Lower half of impedance map: capacitive reactance and resistance.



#### NOTICE THAT IMPEDANCE IS NORMALIZED. 50 >>> 1

FROM EXAMPLE IN ARRL ANTENNA BOOK



#### <u>COMPUTER TOOL ALTERNATIVE TO COMPASS</u> <u>AND STRAIGHTEDGE</u>

Free open-source cross-platform software: Quite Universal Circuit Simulator "QUCS"

- http://qucs.sourceforge.net/
- DC circuit analysis
- AC circuit analysis
- RF circuit analysis (S-parameter simulation)

#### EXAMPLE CIRCUIT "A"

Example from ARRL Antenna Book, Chapter 28.

Antenna impedance is given as 25 + j 25 Ohm at some frequency.

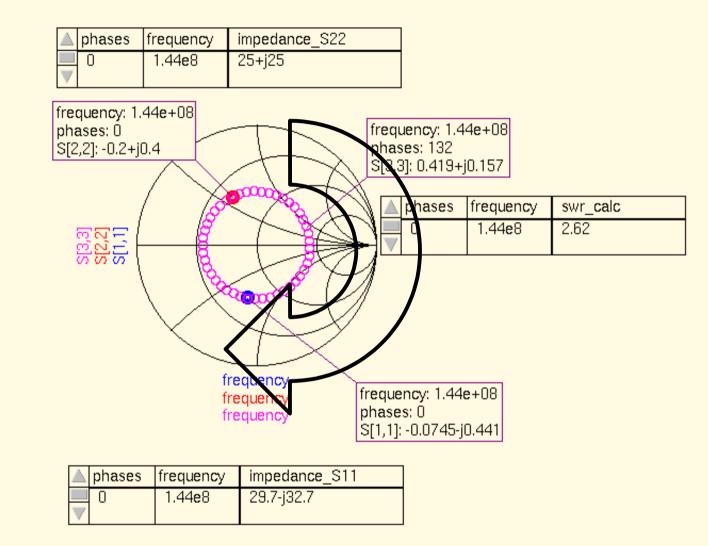
The reactive portion +j25 Ohm indicates an inductive reactance.

Assume the frequency is 144.200 MHz.

What is the impedance at the radio end of a 0.3 wavelength long low-loss cable?

Assume the cable has a characteristic impedance (resistance) of 50 Ohms.

Simulate the circuit using the computer tool, and plot the result on the Smith Chart.


# PC SIMULATION: CALCULATIONS AND DEFINITIONS

| Equation<br>Eqn1<br>carrier_frequency_M<br>wavelength_air_mete<br>speed_of_light=3E8.<br>inductance_given_re<br>line_physical_length<br>reactanceL_ohm=25<br>swr_calc=rtoswr(S[3,<br>impedance_S11=rtoz<br>impedance_S22=rtoz | ers=speed<br>actance<br>_meters=<br>3]).<br>(S[1,1]) | d:_of:lig<br><br>=reacta | .nceL_0 | <br>ohm/(2 | :<br>*pi*ca | arrier |                            | <br><br>z*1,E6)<br> | · · · · · · · · · · · · · · · · · · · |     | .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   .     .   .   . | P1 · Num=<br>Z=50 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------|---------|------------|-------------|--------|----------------------------|---------------------|---------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |
| ~ ~ ~ ~                                                                                                                                                                                                                       |                                                      |                          |         |            |             |        | <u></u>                    |                     |                                       |     |                                                                                                                                                                     |                   |
| · · · · · ⊕ · · ·                                                                                                                                                                                                             |                                                      |                          |         | • •        |             |        | · · 🕀 · ·                  |                     |                                       |     |                                                                                                                                                                     | · 🖌 Numi=         |
|                                                                                                                                                                                                                               |                                                      |                          |         | • •        | • •         | •      |                            |                     |                                       |     |                                                                                                                                                                     | • 😋 Z=50          |
|                                                                                                                                                                                                                               |                                                      |                          |         | · ·        | • •         |        |                            |                     |                                       |     |                                                                                                                                                                     | r 🛨 r - r         |
| S parameter simulation                                                                                                                                                                                                        | • •                                                  | · ·                      | • •     | · ·        |             |        | Parameter<br>sweep         |                     | · · ·                                 |     |                                                                                                                                                                     | · · · ·           |
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             | -      |                            |                     |                                       |     |                                                                                                                                                                     |                   |
| SP1 · · · · ·                                                                                                                                                                                                                 |                                                      |                          |         | • •        | • •         | •      | : SW1 :                    |                     |                                       |     |                                                                                                                                                                     |                   |
| Type=const<br>Values=[144.2 MHz]                                                                                                                                                                                              | • •                                                  | • •                      | • •     |            |             |        | · Sim=SP1· ·<br>. Type=lin | • •                 |                                       |     |                                                                                                                                                                     |                   |
| . values=[144.2 lyint]                                                                                                                                                                                                        |                                                      | · ·                      | · ·     | · ·        |             | •      | Param=phase                | <br>95              |                                       |     |                                                                                                                                                                     | Н РЗ              |
|                                                                                                                                                                                                                               | • •                                                  | • •                      | • •     | · ·        |             |        | Start=0                    | · · ·               |                                       | • • |                                                                                                                                                                     | · 🖳 Numi=         |
|                                                                                                                                                                                                                               |                                                      | · ·                      | • •     | · ·        |             | •      | · Stop≐180 ·               |                     |                                       |     |                                                                                                                                                                     | • 🚫 Z=50          |
|                                                                                                                                                                                                                               |                                                      | · ·                      | · ·     | · ·        |             | •      | · Points=46 ·              |                     |                                       |     |                                                                                                                                                                     | . <u> </u>        |
|                                                                                                                                                                                                                               |                                                      | · ·                      | · ·     | · ·        |             |        |                            |                     |                                       |     |                                                                                                                                                                     | e \Xi e e         |
|                                                                                                                                                                                                                               |                                                      | · ·                      |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |
|                                                                                                                                                                                                                               |                                                      |                          |         |            |             |        |                            |                     |                                       |     |                                                                                                                                                                     |                   |

#### PC SIMULATION: SCHEMATIC

| P1 · · · · · · · · · · · · · · · · · · · | Line1 B1<br>Z=50 Ohm R=25 Ohm<br>L=line_physical_length_meters | L1<br>L=inductance_given_reactance |
|------------------------------------------|----------------------------------------------------------------|------------------------------------|
|                                          | L=line_physical_length_meters                                  |                                    |
| 🗄                                        |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
| · · · · · P2 · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                          | L2                                 |
|                                          |                                                                |                                    |
| 🛨                                        |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
| P3<br>Num=3<br>Z=50 Ohm                  |                                                                | L3                                 |
| · · · 🗄 · · · · · · · · · · ·            |                                                                |                                    |
| 🐨                                        |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
|                                          |                                                                |                                    |
| · · · · · · · · · · · · ·                |                                                                |                                    |
|                                          |                                                                |                                    |

#### **RESULTS: SMITH CHART PLOT**



Rotation along 50 ohm line "Toward Generator (Radio)" 0.3 wavelengths.

#### EXAMPLE CIRCUIT "B"

Example from ARRL Antenna Book, Chapter 28.

Impedance measured at the radio end of a 2.35 wavelength long lowloss coaxial cable is 70 - j 25 Ohm at some frequency.

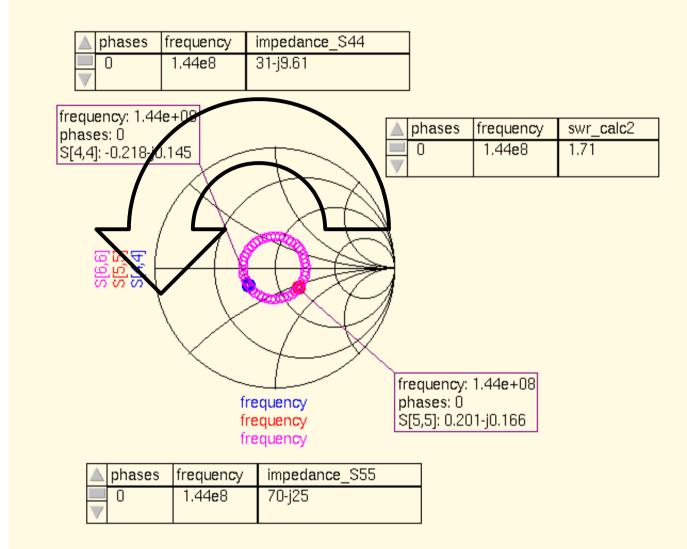
The reactive portion -j25 Ohm indicates a capacitive reactance.

Assume the frequency is 144.200 MHz.

What is the impedance at the antenna feedpoint?

Assume the cable has a characteristic impedance (resistance) of 50 Ohms.

Simulate the circuit using the computer tool, and plot the result on the Smith Chart.


# PC SIMULATION: CALCULATIONS AND DEFINITIONS

| • |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
|---|---|---|---|-------|--------|-------|-------|-------|------|------|--------------|-------------|-------|------------|-------|------|----------|----------------|------|--------------|-------|-------|------|------|--------|
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
| · | • | • | • |       | •      |       | •     | •     |      | •    |              | •           | •     | •          | •     | •    |          | •              | •    | ·            | •     | ·     |      | •    | • •    |
|   |   |   |   | Equ   | atio   | n.    |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
|   |   |   |   |       |        | _     |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
| · |   | • | • | Eqn   | 2 ·    |       | ·     | •     |      | ·    |              |             | •     | •          |       | ·    |          | ·              | •    | ·            | ·     | ·     |      | ·    |        |
|   |   |   |   | capa  | acital | nce_  | _give | en_r  | eac  | tano | ce=          | 1/(2        | *pi*( | carri      | er_fi | regu | enc      | y_N            | 1Hz* | 1E6          | )*rea | actai | nçeC | C_oh | m) _   |
|   |   |   |   | line2 | :_ph;  | ysica | al_le | ngth  | n_m  | etei | rs≕          | -2.3        | 5*wa  | avel       | engt  | h_ai | r_m      | ietei          | rs   |              |       |       |      |      |        |
| · |   |   |   | reac  | tanc   | жC    | ohn   | n≓25  | 5.   |      |              |             |       | •          |       | •    |          | •              |      | •            | •     |       |      | •    |        |
|   |   |   |   | swr_  | calc   | :2=rt | OŞW   | r(S[I | 6,6] | ) _  |              |             | \.    |            |       |      |          |                |      |              |       |       |      |      |        |
|   |   |   |   | impe  |        |       |       |       |      |      | 1)           |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
| · |   |   |   | impe  |        |       |       |       |      |      |              |             | •     | <u>\</u> . |       |      |          |                |      | •            |       |       |      | •    | · ·    |
|   |   |   |   |       |        | _     |       |       |      |      | .,           |             |       |            | < .   |      |          |                |      |              |       |       |      |      |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            | \     |      |          |                |      |              |       |       |      |      |        |
| · |   |   |   |       |        |       |       |       |      |      |              |             |       |            | . \   | < ·  |          |                |      |              |       |       |      | •    |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
|   |   |   |   |       |        | •     | •     | •     | •    | •    |              |             |       | •          | •     | • \  | \        | •              | •    |              | ·     | •     | •    |      |        |
| · |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      | . \      |                |      |              |       |       |      | •    |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          | $\overline{\}$ |      |              |       |       |      |      |        |
|   |   |   |   |       |        | •     | •     | •     | •    | •    |              | •           |       | •          | •     | •    |          | • /            | ``   | •            | ·     | •     | •    |      |        |
| · |   |   |   |       |        |       |       |       |      |      |              |             |       | •          |       |      |          |                | ·    |              |       |       |      | •    |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          |                | Ň    | $\backslash$ |       |       |      |      |        |
|   |   |   |   |       | •      | •     | •     | •     | •    | •    |              | •           | •     | •          |       | •    | •        | •              | •    | ./           | •     | •     | •    |      |        |
|   |   |   |   |       |        |       | -11   | cin   |      | th   | <u>م</u> . ر | <u>~</u> ~r | nn    | ı ı ta     | or o  | cim  | nril     | ati            | an   | · r          | חסר   | ıat   | iva  |      | ble    |
|   |   |   |   |       |        |       | U     |       | -    |      |              |             |       |            |       |      |          |                |      | -            | _     |       |      |      |        |
|   |   | · |   |       | ·      | ·     | ·     | Ie    | enc  | זנ   | ١Ś           | ar          | e p   | )OS        | sib   | le.  |          | he             | e 'n | eq           | ati   | ve    | SV   | alue | َ زَدِ |
|   |   |   |   |       |        |       |       |       | _    | -    |              |             |       |            |       |      |          |                |      | _            |       |       |      |      |        |
|   |   |   |   |       |        |       |       | dl    | OV   | vS   | I C          | λd          |       |            |       | _    |          |                |      |              | CIL   | CIE   |      | th   | e      |
|   |   | · |   |       |        | ·     | ·     |       |      | ·    |              |             | Ó     | n'n        | osi   | tė   | dir      | e<br>C         | tio  | n            | ·     | ·     | ·    | ·    |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             | Ÿ     | PP         |       | ·    | <u> </u> | <u> </u>       | u.   |              |       |       |      |      |        |
|   |   |   |   |       |        |       |       |       |      |      |              |             |       |            |       |      |          |                |      |              |       |       |      |      |        |
|   | • | • |   |       | •      |       |       | •     | ·    | ·    | •            | •           | •     |            | •     | •    | ·        | •              |      | •            | •     | •     | •    |      | • •    |

#### PC SIMULATION: SCHEMATIC

| [] P4                                                  |                                                     | R4 · · · · · · ·      | - C1 🗄 - C - C - C - C - C - C - T - T - C - T - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------|-----------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Num=4                                                  |                                                     | R=70 Ohm · · · · ·    | Ciana ciump repotamos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ''''''' 🔁 Z=50 Ohm'''''''''''''''''''''''''''''''''''' | Line2<br>Z=50 Ohm<br>L=line2_physical_length_meters |                       | C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · · · <u>·</u> · · · · · · · · · ·                     | ·L=line2_physical_length_meters                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 🛨                                                      |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     | -AAA                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · 💾 P5 · · · · · · · ·                             |                                                     | and the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Num=5                                                  |                                                     | R5                    | C2<br>C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                        |                                                     | R=/U Uhm              | C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                                                      |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                  |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        | _                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        | Ø                                                   | R6<br>R6<br>R=70 Ohm  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                  |                                                     | PC                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 🔀 Num=6                                                | · X2 · · · · · · · · · · · · · · · · · ·            | R-70 Obm              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 🕎 Z=50 Qhm                                             | , phi=phases , , , , , , ,                          |                       | C3 Transformed Tra |
| 上                                                      |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>T</b>                                               |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **RESULTS: SMITH CHART PLOT**



Rotation along 50 ohm line "Toward Load" 2.35 (4 times + 0.35)

### EXAMPLE CIRCUIT "C"

An exact half-wavelength thin-wire dipole has been constructed from basic physics equations (instead of the more appropriate 468/f(MHz) design equation).

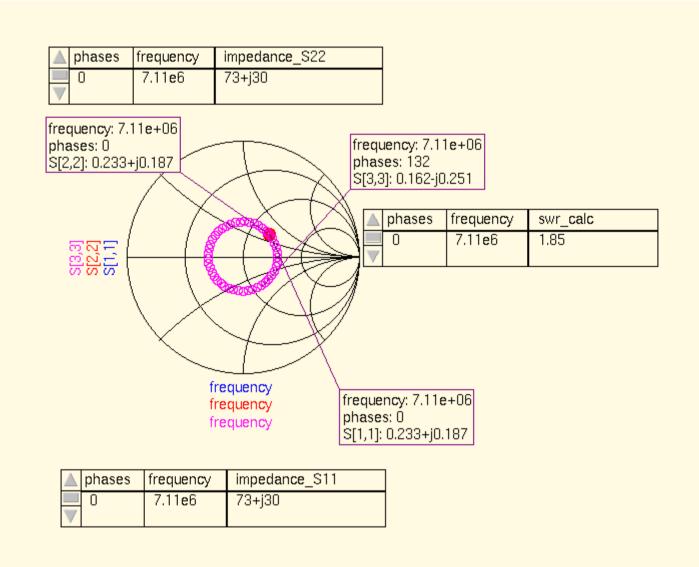
Impedance data versus frequency for this antenna is plotted in a textbook for antenna engineers by Stutzman & Thiele.

Antenna is designed for 7.110 MHz.

For the following frequencies what is the impedance at the antenna feedpoint? 7.110 MHz, 14.110 MHz , and 18.110 MHz?

Simulate the circuit using the computer tool, and plot the result on the Smith Chart.

Try to design a simple inductance-capacitance matching circuit to improve the SWR, and plot the performance.


# PC SIMULATION: SCHEMATIC 7.11 MHz, 73 + j 30 Ohms

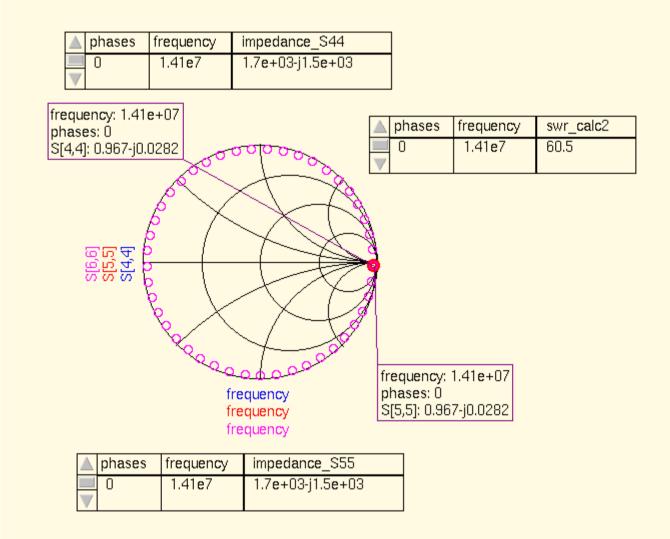
| Equation                                         |                                   |
|--------------------------------------------------|-----------------------------------|
| Eqn1                                             |                                   |
| carrier1_frequency_MHz=7.110                     |                                   |
| wavelength_air_meters=speed_of_light/(carrier1_f | requency. MHz*1E6).               |
| speed of light=3E8                               |                                   |
| inductance1_given_reactance=reactance1L_ohm/     | (2*pi*carrier1 frequency MHz*1E6) |
| line_physical_length_meters=0.0*wavelength_air_i |                                   |
| reactance1L_ohm=30                               |                                   |
| swr_calc=rtoswr(S[3,3])                          |                                   |
| impedance_S11=rtoz(S[1,1])                       |                                   |
| impedance_S22=rtoz(S[2,2])                       |                                   |
| mpedance_022=n02(0[2,2])                         |                                   |
|                                                  |                                   |
| S parameter                                      | Parameter                         |
|                                                  |                                   |
|                                                  | sweep and set and set and set     |
|                                                  |                                   |
| SP1                                              | SW1                               |
| Type=const                                       | Sim=SP1                           |
| Values=[7.11MHz]                                 | Type=lin                          |
|                                                  | Param=phases                      |
|                                                  | Start=0                           |
|                                                  | Stop=180                          |
|                                                  | Points=46                         |

### PC SIMULATION: SCHEMATIC 7.11 MHz, 73 + j 30 Ohms

| · · · · · · · · · · ·                 | <u> </u>                               | <u></u>                       |
|---------------------------------------|----------------------------------------|-------------------------------|
|                                       | Line1.                                 | Ľ1 · · · · · · · · · · · · ÷  |
|                                       | .Z=50.Ohm                              | L=inductance1_given_reactance |
| Z=50 Ohm                              | L=line_physical_length_meters          |                               |
| . 🗖                                   |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        | <u>-</u>                      |
| · [] P2                               | · · · · · · · · · · · · · · · · · · ·  | L2 · · · · · · · · · · ·      |
| . 🔂 Num=2                             | ······································ | L=inductance1_given_reactance |
| . 🛨 Z=50 Ohm                          |                                        |                               |
| . 🛨                                   |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
| □ <mark> </mark> † P3                 | Ø                                      | - <u></u>                     |
| Num=3                                 | ·                                      | L3 · · · · · · · · · ·        |
|                                       | phi=phases R=73 Ohm                    | L=inductance1_given_reactance |
| . 🛨 Z=50 Ohm                          |                                        |                               |
| · · · · · · · · · · · · · · · · · · · |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |
|                                       |                                        |                               |

#### RESULTS: SMITH CHART PLOT 7.11 MHz, 73 + j 30 Ohms




# PC SIMULATION: SCHEMATIC 14.110 MHz, 1700 - j 1500 Ohm

|                              | •              | • •        | •    | •    | •          |       |            |          | · · ·  | •        | •   | •    | •   | • | •  | ·      |
|------------------------------|----------------|------------|------|------|------------|-------|------------|----------|--------|----------|-----|------|-----|---|----|--------|
| S parameter simulation       |                | <br>       |      |      |            |       | ram<br>eep | ete      | r<br>- |          |     |      |     |   |    |        |
|                              |                |            |      |      | •          | SW1   | <br>I      |          |        |          |     |      |     |   | •  |        |
| SP1                          | •              |            | •    | •    | ·          |       |            | •        | • •    |          |     |      |     | • | •  | ·      |
| Type=const                   |                |            |      | •    | •          | Sim=  |            |          | • •    |          |     |      |     |   | •  | •      |
| Values=[14.11 MHz]           |                |            |      |      |            | Туре  | ∋=lin      |          | · ·    |          |     |      |     |   |    |        |
|                              |                |            |      | •    |            | Para  | m=pł       | nase     | s '    |          |     |      |     |   |    |        |
|                              |                |            |      |      |            | Start | =0         |          |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            |       | =180       |          |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            |       | ts=46      |          |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            | Poin  | ts=4t      | <b>.</b> |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
| Equation                     |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
| Eqn2                         |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
| capacitance_given_reactance  | . <u>≓1</u> // | (2*n       | i*ca | rrie | <b>r</b> 2 | fredu | onci       | MЦ       | ÷*1⊑   | -<br>6*r |     | ofar | nċo | C | ٥h | ر<br>س |
|                              |                | ( <u> </u> |      |      |            | _nequ | ency       | I        | ~ .    |          | eau | ·    | ·   |   |    | ,      |
| carrier2_frequency_MHz=14.   |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
| line2_physical_length_meters | ;=0*           | wav        | elei | ngth | n_a        | ir_me | ters       |          |        |          |     |      |     |   |    |        |
| reactanceC_ohm=1500          |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
| swr_calc2=rtoswr(S[6,6])     | ·              |            | ·    | ·    | ·          |       |            | ·        |        |          | ·   |      |     |   |    | ·      |
|                              | ·              | • •        |      | ·    | ·          |       |            | ·        | • •    |          | ·   |      |     |   |    |        |
| impedance_S44=rtoz(S[4,4])   | ·              |            |      | •    | •          | • •   | • •        | ·        | • •    |          |     |      |     |   | •  | •      |
| impedance_S55=rtoz(S[5,5])   |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |
|                              |                |            |      |      |            |       |            |          |        |          |     |      |     |   |    |        |

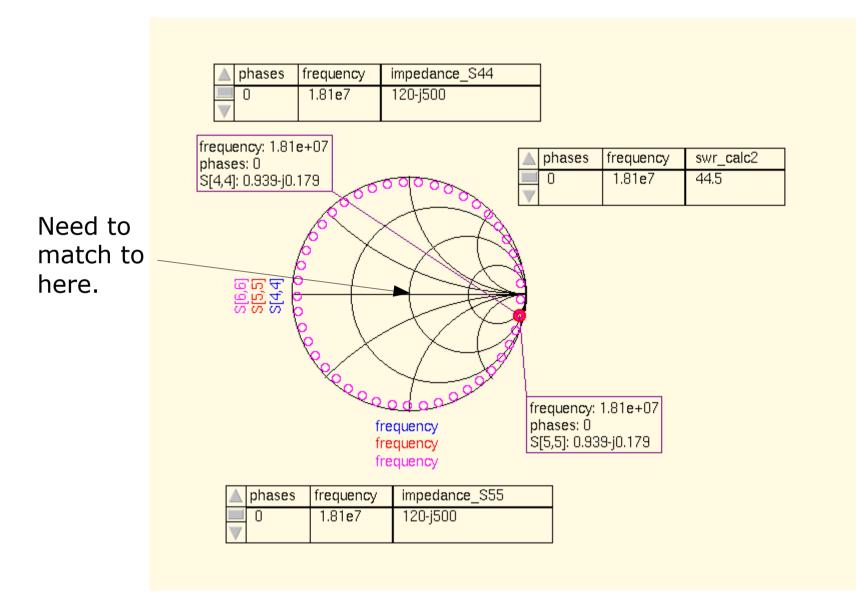
#### PC SIMULATION: SCHEMATIC 14.110 MHz, 1700 - j 1500 Ohm

| P4                                                                         | Line2<br>Z=50 Ohm<br>L=line2_physical_length_                                                                                                                                                                                                                                                                                                                                                     | <b>√√ -</b><br>R4 · · · · · · · · · · · · · · · · · · · | C1<br>C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   | <br>                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P5<br>Num=5<br>Z=50 Ohm                                                    | .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .     . | R5                                                      | C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · ·                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{array}{c}   P6 \\   Num=6 \\   Z=50 \\   Ohm \\   L \end{array} $ | X2 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                          | R6                                                      | C3.<br>C=capacitance_given_reactance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                            | .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .       .     .     .     .     .     .     .     .     .                                                                                                                       | · · · · · · · · · ·                                     | ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     ·     · |

### RESULTS: SMITH CHART PLOT 14.110 MHz



Matching this impedance to 50 ohms would be a challenge. SWR 60:1


## PC SIMULATION: SCHEMATIC 18.110 MHz, 120 - j 500 Ohms

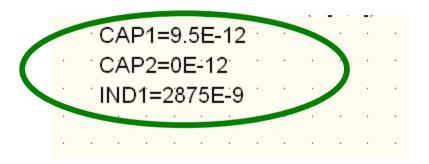
| Equation                                                                       |
|--------------------------------------------------------------------------------|
| <sup>•</sup> Eqn2                                                              |
| capacitance_given_reactance=1/(2*pi*carrier2_frequency_MHz*1E6*reactanceC_ohm) |
| carrier2_frequency_MHz=18.110                                                  |
| line2_physical_length_meters=0*wavelength_air_meters                           |
| reactanceC_ohm=500                                                             |
| swr_calc2=rtoswr(S[6,6])                                                       |
| impedance_S44=rtoz(S[4,4])                                                     |
| impedance_S55=rtoz(S[5,5])                                                     |
|                                                                                |
|                                                                                |
|                                                                                |

# PC SIMULATION: SCHEMATIC 18.110 MHz, 120 – j 500 Ohms

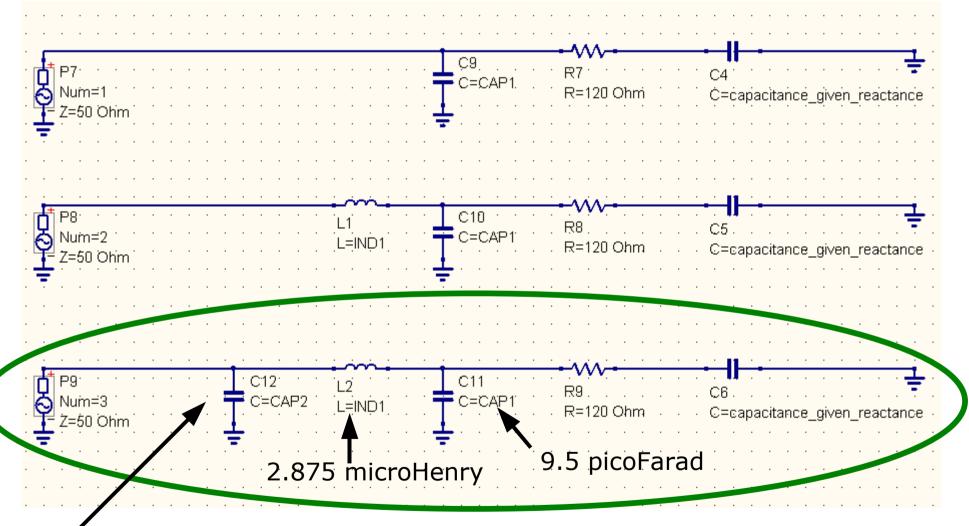
| P4                                    |                                       |                         | Capacitance_given_reactance           |
|---------------------------------------|---------------------------------------|-------------------------|---------------------------------------|
| · 🔽 · · · · · · · · · · · ·           | L=line2_physical_length_meters        | · · · · · · · · · · · · | · · · · · · · · · · · · · · ·         |
| · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · ·     | · · · · · · · · · · · · · · · · · · · |
| P5<br>Num=5<br>Z=50 Ohm               |                                       | 20 Ohm                  | capacitance_given_reactance           |
| · ₹ · · · · · · · · · · · ·           | · · · · · · · · · · · · · · ·         | · · · · · · · ·         | · · · · · · · · · · · · · ·           |
| · · · · · · · · · · · · · ·           |                                       | · · · · · · · · ·       |                                       |
| P6 <sup></sup>                        | ×2····R6.<br>phi=phases·····R=1:      |                         | capacitance_given_reactance           |
|                                       |                                       |                         |                                       |

#### RESULTS: SMITH CHART PLOT 18.110 MHz



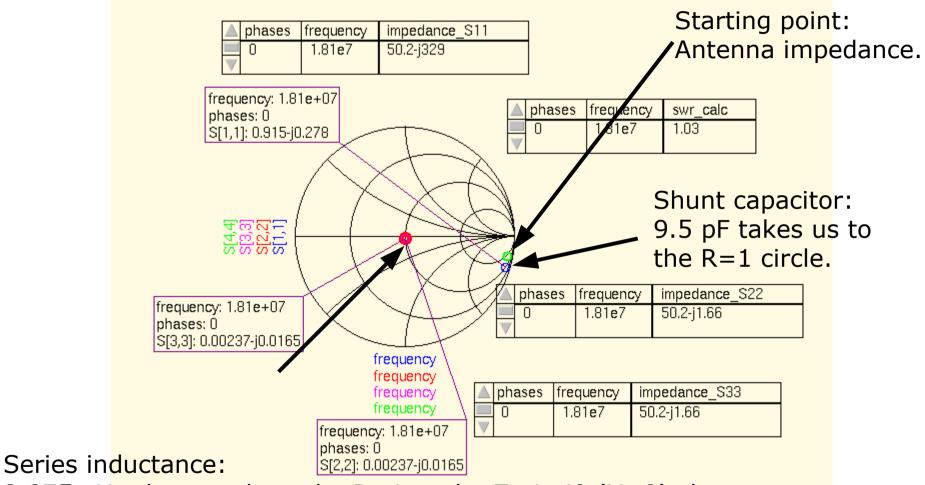

Matching this impedance to 50 ohms is not as severe as 14.11MHz. Here SWR 44:1. Try to design an L-C network.

# PC SIMULATION: MATCHING NETWORK 18.110 MHz


| S parameter                                                                                                                                                      |          | Paramet                | er    |             |      |             | · ·   | •   | •           |             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|-------|-------------|------|-------------|-------|-----|-------------|-------------|-------------|
| simulation                                                                                                                                                       |          | sweep                  |       | •           | •    |             |       |     |             |             |             |
| SP1                                                                                                                                                              |          | SW1                    |       |             |      |             |       |     |             |             |             |
| Type=const                                                                                                                                                       |          | Sim=SP1                |       |             |      |             |       |     |             |             | •           |
| Values=[18.11 MHz]                                                                                                                                               |          | Type=lin               |       |             |      |             |       |     |             |             | •           |
|                                                                                                                                                                  |          | Param=phas             | ses   |             |      |             |       |     |             |             | •           |
|                                                                                                                                                                  |          | Start=0                |       | •           | •    | •           |       | •   | •           |             | •           |
|                                                                                                                                                                  |          | Stop=180               |       |             |      |             |       |     |             |             |             |
|                                                                                                                                                                  |          | Points=46              |       |             |      |             |       |     |             |             |             |
| uation                                                                                                                                                           |          |                        |       |             |      |             |       |     |             |             |             |
| qn2                                                                                                                                                              |          |                        |       |             |      |             |       |     |             |             |             |
| apacitance_gi∨en_reactance                                                                                                                                       | =1/(2*pi | *carrier2 freq         | uency | MHz         | z*1E | E6*I        | read  | tan | céC         | o           | hi          |
|                                                                                                                                                                  |          | · · · <del>·</del> · · |       |             |      |             |       |     |             | ·           |             |
| arrier2_frequency_MHz=18.                                                                                                                                        |          |                        |       |             |      |             |       |     |             |             |             |
| arrier2_frequency_MHz=18.<br>he2_physical_length_meters:                                                                                                         |          | length air me          | ters  |             |      |             |       |     | •           |             | •           |
| e2_physical_length_meters                                                                                                                                        |          | length_air_me          | ters  |             | •    |             | · ·   | •   |             |             |             |
| e2_physical_length_meters<br>actanceC_ohm=500                                                                                                                    |          | length_air_me          | ters  | •           |      |             | · ·   |     |             |             | •           |
| ne2_physical_length_meters<br>actanceC_ohm=500<br>wr_calc2=rtoswr(S[6,6])                                                                                        |          | length_air_me          | ters  | •           |      |             | · ·   |     |             |             | •           |
| ne2_physical_length_meters<br>actanceC_ohm=500<br>wr_calc2=rtoswr(S[6,6])<br>npedance_S44=rtoz(S[4,4])                                                           |          | length_air_me          | ters  | •           |      | •           | · · · | •   | •           | •           | •           |
| arrier2_frequency_MHz=18.<br>ne2_physical_length_meters<br>actanceC_ohm=500<br>wr_calc2=rtoswr(S[6,6])<br>npedance_S44=rtoz(S[4,4])<br>npedance_S55=rtoz(S[5,5]) |          | length_air_me          | ters  | ·<br>·<br>· |      | ·<br>·<br>· | · · · | •   | ·<br>·<br>· | ·<br>·<br>· | · · · · · · |

#### PC SIMULATION: MATCHING NETWORK 18.110 MHz

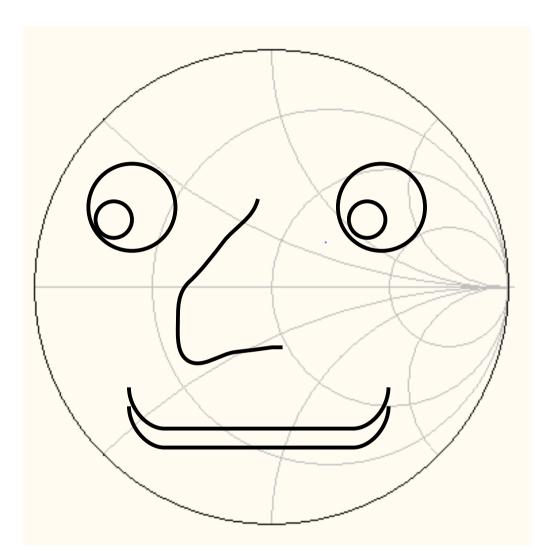
Trial and error values of inductance and capacitance that produce a match for 18.110 MHz. Circuit shown on following page.




#### PC SIMULATION: MATCHING NETWORK 18.110 MHz



Zero picoFarad (in a real tuner, the radio-side variable capacitor is set to its minimum value)


#### RESULTS: SMITH CHART PLOT 18.110 MHz MATCHED



2.875  $\mu$ H takes us along the R=1 to the Z=1+j0 (X=0) chart center.

#### Z is normalized to the reference impedance 50 ohms.

Un-normalized impedance is 50 ohms.



# **THANKS!**