

Summary of Project Build

- 1" copper tube loop, approx 13' in length (40" dia)
- Russian variable vacuum capacitor 5 250 pf
- Homemade Arduino (Teensy) based autotuner
- Serial cables for ICOM 7300 and Flexradio
- Calculated tuning range 5.5MHz to 35MHz – Actual tuning range 6.2 MHz to 28.4 MHz
- Resistance of loop and all connections 0.06 ohms

Some Performance Data

- Calculated tuning range 5.5MHz to 35MHz
 Actual tuning range 6.2 MHz to 28.4 MHz
- Resistance of loop and all connections 0.06 ohms
- Calculated 40M loop voltage at 100W is 4,800V (cap rated at 5KV)
- Calculated 40M loop voltage at 500W is 11,000V

SWR Range of 80M Endfed (for comparison)

SWR Range of Mag Loop Antenna

File Edit View Configure Measurement Help								
le Edit View Configure Measurement Help								
Range: 14.000 ± 14.000 MHz, 500 points SWF Z0 = 50.0 Ohm 50.0 Ohm								
9								
	_							
6	-							
5	-							
4								
3	-							
2	_							
1.5	-							
1 14 000 MHz 28	000							
Ready								

Actual Bandwidth to 2:1 SWR (11% reflected power)

Frequency (MHz) Min SWR Calc Bandwidth KHz Actual Bandwidth KHz**

7	1.0	5	8
14	1.1	31	25
18	1.2	72	45
21	1.3	140	60
28	1.4	426	100

**Measured with RigExpert AA-600

Actual Transmit Radiation Pattern at 20M (3' above ground)**

- 85% radiated within 20° of axis
- 45% radiated within 70° of axis
- 15% radiated (null) at 90 degrees

**Tested in nearfield with uncalibrated diode field strength meter

Magnetic Loop Transmit Performance

Transmit Resonant Range

Measuring Transmit Performance

- Weak Signal Propagation Reporter (WSPR)
- Provides comparison of multiple antennas <u>coincidently</u> received at a remote location using <u>identical</u> transmitters
- Used (2) WSPRLite 200mw transmitters
 - Sends beacon signal containing callsign, grid locator, power level
 - Compresses data, 4-FSK modulation, uses FEC, 2 minute cycle
- Used to quantify <u>actual</u> transmit performance
- Real-time signal reports available on global map

Weak Signal Propagation Reporter (WSPR)

KF0RQ Trap Vertical / Magnetic Loop TRANSMIT Comparison Tests

20M KF0RQ Trap Vertical

20M KF0RQ Trap Vertical Coincident Spots

Spots: K2RAS vs KF0RQ - 14 MHz Coincident callsign spots

261 spots, mean -4.12 dB, standard deviation 7.058 dB

So the trap vertical outperformed the transmit loop, lets try to dig deeper into why...

20M KF0RQ Trap Vertical

20M Unique Spots by Azimuth

The loop covered esentially the same azimuth range as the trap dipole

Loop Spots by Azimuth

20M Trap Vertical Coincident dB

Signal strength by azimuth, checking for loop antenna nulls...

Azimuth vs dB Difference

BOTTOM LINE: Both antennas were strong and weak along the axis of most signals

80M Endfed / Magnetic Loop TRANSMIT Comparison Tests

20M Endfed Transmit Comparison

20M Coincident Spots, Spots by Azimuth

20M Coincident Spots, SNR Difference by Azimuth

BOTTOM LINE: Interesting, both antennas outperformed each other along the East / West axis

20M Coincident Spots, <u>SNR Difference by Distance</u>

NOTE: Three stations in Brazil (9,400 mi) were spotted by both antennas, but not at the same time

BOTTOM LINE: Neither antenna outperformed outside the rage of 1000-3000 miles

20M Missed Spot Comparison

20M Loop Misses by Azimuth

20M Loop Misses by Distance

2000

20M Endfed Misses by Distance

BOTTOM LINE: Roughly the same performance on 40M as 20M

20M Alpha Loop** / My Loop TRANSMIT Comparison Tests

** The Alpha Loop is a commercial 15W 10-80M magnetic loop built using LMR400, priced at \$400

20M Alpha Loop Coincident Spot Comparison

Ciro Mazzoni Loop Comparison**

Electrical and mechanical specifications of 3A3Y LOOP

Electrical specifications

**Best commercial transmit loop, priced at \$2500

Magnetic Loop Receive Performance

40M Resonant Range

40M WSPR Receive (Receive Loop)

DXEngineering <u>40M</u> WSPR Receipts (on Flexradio)

🔘 WSJT-	X v2.0.0	by K1JT				
File Con	figurations	View M	ode Decode	Save Too	ls Help	
UTC	dB	DT	Freq	Drift	Call	Grid
0202	-26	0.5	7.040040	0	K4APC	EM81
0202	-18	1.9	7.040081	-1	W8LN	EM64
0202	-24	0.4	7.040100	0	NOXXX	DM04
0204		0.4	7.040030	0	W6LVP	DM04
0204	-18	0.5	7.040044	0	K4APC	EM81
0204	-21	2.0	7.040081	0	W8LN	EM64
0204	-23	0.3	7.040095	0	VA7BBG	C065
0204	-24	0.3	7.040150	0	VAJUAL	EN94
0204	3 -	-2.7	7.040169	-1	W6LVP/A	
0206	-11	0.4	7.040020	0	AE6GD	DM04
0206	-21	0.5	7.040048	0	K4APC	EM81
0206	-27	2.6	7.040081	0	KD4OTA	EM74
0206	-25	0.3	7.040091	0	WW6CC	DM13
0206	3	1.1	7.040100	-1	KF6BL	DM13
0206	-17	0.5	7.040100	0	NOXXX	DM04
0206	-24	0.2	7.040152	0	KA3JIJ	EM84
0206	-22	0.5	7.040162	0	W5GHU	DM41
0206	-2	0.3	7.040165	0	K6MCS	CM98
•			Ш			4

Transmit Loop 40M WSPR Receipts (on IC-7300)

🔘 WSJT-X 🛛 v2.0.0 🛛 by K1JT

File Configurations View Mode Decode Save Tools Help

UTC	dB	DT	Freq	Drift	Call	Grid	
							- /
0202	-19	0.1	7.040032	0	ZS3D	KG01	
0202	-12	0.3	7.040042	0	K4APC	EM81	
0202	-13	1.7	7.040083	0	W8LN	EM64	
0202	-15	0.2	7.040102	Ο	NOXXX	DMO4	
0204	3	0.2	7.040032	 0	W6LVP	DMO4	1
0204	-12	0.3	7.040046	0	K4APC	EM81	
0204	-18	1.7	7.040083	0	WSLN	EM64	
0204	-22	0.0	7.040097	0	VA7BBG	C065	
0204	-14	0.1	7.040152	0	VA3UAL	EN94	
0204	6]-3.0	7.040171	0	W6LVP/A		
0206	-6	0.2	7.040022	 0	AE6GD	DMO4	
0206	-15	0.3	7.040050	Ο	K4APC	EM81	
0206	-20	2.3	7.040083	Ο	KD4OTA	EM74	
0206	8	0.9	7.040102	Ο	KF 6BL	DM13	
0206	-11	0.1	7.040102	-1	NOXXX	DMO4	
0206	-18	0.1	7.040154	1	KA3JIJ	EM84	
0206	9	0.1	7.040167	Ο	K6MCS	CM98	
<						>	

Other antenna did not hear spot Stronger signal received Weaker signal received The transmit loop strongly outperformed the DXEngineering loop receiving performance on 40M

20M WSPR Receive (Endfed)

Endfed Antenna 20M WSPR Receipts (on Flex)

🔘 WSJT-X v2.0.0 by K1JT

File Configurations View Mode Decode Save Tools Help

UTC	dB	DT	Freq	Drift	Call	Grid
1924	-10	0.1	14.097130		KZKAD	UN TO
1928		ahahahahahah	Ti	ransmit	ting WSPR	
1926	-23	1.5	14.097029	0	KC9NBV	EM69
1926	-23	0.5	14.097061	0	K8JBV	EN91
1926	-26	0.5	14.097076	-1	W2ASX	EM93
1930			Ti	ransmit	ting WSPR	
1932	-18	0.4	14.097062	 0	K8JBV	EN91
1932	-20	1.0	14.097074	0	N4DPH	EM64
1932	-23	0.3	14.097129	0	K7FET	CN85
1932	-14	-1.5	14.097141	0	AA7FV	DM42
1934	6	0.2	14.097034	-1	AL7CR	CN82
1934	-15	1.5	14.097084	0	W4DNR	EM64
1934	-22	-0.6	14.097153	0	NR7V	CN88
1936			Ti	ransmit	ting WSPR	v
<						>

The transmit loop strongly outperformed the endfed on 20M with a 10db average higher signal

Other antenna did not hear spot Stronger signal received Weaker signal received

Transmit Loop 20M WSPR Receipts (on IC-7300)

🔵 WSJT-	-X v2.0.0	by K1	IT				
File Con	figurations	View	Mode Decode	Save Too	ls Help		
UTC	dB	DT	Freq	Drift	Call	Grid	
1926	-14	0.6	14.097073	-1	W2ASX	EM93	
1926	-14	0.5	14.097091	0	K6PZB	CM88	
1926	-20	0.5	14.097094	0	WJATV	FN20	
1926	-17	0.3	14.097126	0	AE5HO	EM13	
1926	-19	2.5	14.097131	1	KD5LBK	EM13	
1926	-23	-0.4	14.097137	0	KD9ISN	EN41	
1926	-18	-0.4	14.097151	0	NR7V	CN88	
1926	-22	1.3	14.097171	0	W3CSW	FM19	
1928			Т	ransmit	ting WSPR		
1930			Т	ransmit	ting WSPR		
1932	-26	0.2	14.097051	0	KR6ZY	CM95	
1932	-9	0.6	14.097059	0	K8JBV	EN91	
1932	-22	0.4	14.097064	0	KC2HJR	EM57	
1932	-10	1.3	14.097071	0	N4DPH	EM64	
1932	-31	0.2	14.097089	-2	VA7BBG	C065	
1932	-12	0.8	14.097115	0	KD6RF	EM22	
1932	-11	0.6	14.097126	0	K7FET	CN85	
1932	-16	2.6	14.097131	0	KD5LBK	EM13	
1932	-б	-1.2	14.097138	0	AA7FV	DM42	
1932	-21	0.1	14.097145	0	KA3JIJ	EM84	
1932	-24	0.4	14.097192	0	K7KRR	CN87	
1934	16	-0.0	14.097031	0	AL7CR	CN82	
1934	-12	-0.0	14.097055	0	W5VMA	EM42	
1934	-7	1.5	14.097082	0	W4DNR	EM64	
1934	-26	1.5	14.097100	0	VE3SAO	EN58	H
1934	-8	-0.7	14.097151	0	NR7V	CN88	
1936			Т	ransmit	ting WSPR		-
4			111				

20M WSPR Receive (Receive Loop)

DXEngineering **<u>20M</u>** WSPR Receipts (on Flex)

🔘 WSJT-X v2.0.0 by K1JT

F	ile Co	nfiguratio	ons View	Mode Decod	e Save	Tools Help	
	UTC	dB	DT	Freq	Drift	Call	Grid
							^
	2204	-18	1.6	14.097103	1	VE3SAO	EN58
	2204	-19	-0.7	14.097190	0	KD2 KQA	FN24
	2206	-17	1.0	14.097075	0	N4DPH	EM64
	2206	-18	-0.6	14.097154	0	NR7V	CN88
	2208	16	-1.0	14.097025	0	W9MSK	EN60
	2208	-5	2.0	14.097029	0	KC9NBV	EM69
	2208	-20	0.4	14.097062	0	K8JBV	EN91
	2208	-12	0.1	14.097118	-1	VE7BPB	CN89
	2210	-2.2	-q .3	14.097031	0	NE2U	FN2O
	2210	-22	o	14.097044	1	KK1D	FN3 1
	2210	0	-0.0	14.097059	0	W5VMA	EM42
	2210	-6	1.5	14.097085	0	W4DNR	EM64
	2210	-18	0.1	14.097097	-1	W3ATV	FN2O
_	2210	-5	9.1	14.097105	0	KV4PD	EM75
	2210	-26	Q.7	14.097148	-2	ACSXO	EN91
	2210	-14	-0.6	14.097154	0	NR7V	CN88
	2210	-24	-0.5	14.097156	-2	WB4CSD	FM08
	2210	6	-1.0	14.097174	0	KA4M	EM72
	2210	-17	0.1	14.097200	0	KT4LH	EM78 🗸
	<						>

The transmit loop and DXEngineering loop had equal receiving performance in this test, but the transmit loop generally outperformed on 20M

Transmit Loop **<u>20M</u>** WSPR Receipts (on IC-7300)

🔘 WSJT-X v2	2.0.0 by K1.	JT			
File Configural	tions View	Mode Decode	Save Too	ls Help	
UTC di	3 DT	Freq	Drift	Call	Grid
2204 -24 2204 -28 2204 -12	4 0.3 3 1.7 2 1.9	14.097002 14.097052 14.097099	4 0 0	N8LWF K3EA VE3SAO	EM89 FN20 EN58
2204 -10	6 <u>-</u> 0.4	14.097187	1	KD2KQA	FN24
<u>2206 -21</u> 2206 -10	1 1.3 0 -0.4	14.097072 14.097150	0 0	N4DPH NR7V	EM64 CN88
2208 13 2208 -8 2208 -19 2208 -17 2208 -17	3 -0.7 3 2.2 9 0.6 7 0.6 7 0.3	14.097021 14.097026 14.097059 14.097098 14.097115	0 0 0 0 -1	W9MSK KC9NBV K8JBV WA2EUJ VE7BPB	EN60 EM69 EN91 FM19 CN89
2210 -27 2210 -17 2210 -19 2210 -19 2210 -28 2210 -28 2210 -29 2210 -24 2210 -24 2210 -24 2210 -24 2210 -24	7 C.6 1 C.2 9 1.7 9 C.4 9 C.2 3 1.5 9 -C.4 4 -C.1 2 -C.8	14.097028 14.097056 14.097081 14.097094 14.097102 14.097120 14.097150 14.097152 14.097170	0 0 -1 -1 0 0 0	NE2U W5VMA W4DNR W3ATV KV4PD W3PM NR7V WB4CSD KA4M	FN20 EM42 EM64 FN20 EM75 EM64 CN88 FM08 EM72
2210 -25	5 0.2	14.097196	0	KT4LH	EM78 👻
4		III			•

DXEngineering Loop Receive Comparison

File Settings Profiles Help

FlexRadio

PC Au

BX DXEngineering Loop Receive Comparison $\Delta \nabla$ +20dB -80 **CW Contest** N4AFT -100 MED WB8TDG TERW GM W7VO KI1G NIAE AE4ED F4DXW WOBV IR1G K4I PO K3ZO WO9S -120 ST TM5Y 140 CU4DX VE3LA K4 LIVE 14.100 4010 4.020 14.030 14.040 4.050 4.060 14.070 14.080 14.090 10 40 DXEngineering Receive Loop 1:00 Transmit Loop

KF0RQ Hytower Vertical Comparison

- The loop on 40M outperformed the vertical on receive
- The loop on 40M underperformed the vertical on transmit
- The loop on 40M matched the elevated yagi on receive

- Actual Loop Performance
 - Achieved near 1:1 SWR across the 40M to 10M bands
 - On <u>RECEIVE</u>, the transmit loop outperformed all antennas on all tunable bands (the transmit loop can't tune below 40M)
 - On <u>TRANSMIT</u>, the transmit loop signals were reported average 5 dB lower on 40M, 3dB lower on 20M than the Endfed. The number of spots were roughly the same.
 - On <u>TRANSMIT</u>, the transmit loop underperformed the 40M ¹/₂ wave vertical
 - The loop outperformed the closest 'equivalent' commercial loop on receive and transmit
 - Elevating the loop from 3 feet to 7 feet above ground improved DX and decreased the noise floor

- Actual loop performance
 - The loop did not hit local spots (<100 mi) as well as the endfed. It may not be good solution for NVIS
 - The loop could handle 500+ watts (with a upgraded cap), can't do that using the Endfed through the trees!
- Use the coupler loop placement to optimize antenna performance
 - Simply optimizing SWR is not enough (remember a dummy load SWR is 1:1)
 - An airgap from primary loop lowered SWR and increased performance (GOOD)
 - A smaller coupler loop decreased SWR, but decreased performance (BAD)
 - Flattening the coupler loop increased coupling and increased performance (GOOD)

- Project Build Considerations
 - The 13' loop tunes <u>40M to 12M</u>, if it were sized for 80M it would likely only tune 80M - 20M
 - The 13' loop is about 30 lbs and top heavy (with the cap on top). $1\frac{1}{2}$ PVC tube with wood dowel inside supports the loop
 - I believe 80M would require a 26' loop (over 8' diameter). The design would likely require a double loop, creating further potential issues (weight, loop coupling...)
 - The Arduino autotuner makes tuning the resonant loop a nonissue
 - Don't use 1/10" headers on the autotuner PCB wires, the connectors get loose and are unreliable

- So, to summarize...
 - The loop excelled on receive, outperforming the vertical, horizontal endfed, and receive only loop. Performance neared that of the elevated yagi
 - The loop is a compromise transmit solution, matching the 80M endfed, but not as good as the verticals

- What I would do next time...
 - Try to find a butterfly capacitor capable of 500W, don't know the durability of the vacuum capacitor seals in weather over time.
 - 1/10" header pin connectors are unreliable, would solder more wires on the Arduino PCB
 - Compare performance positioning the heavy capacitor on the bottom of the loop, this would make the loop less top heavy
 - The Arduino autotuner worked well, it could be used on any antenna with a variable cap

Any Questions...