

Satellite Communication on the "Cheap!" (and much more...)

Chuck Poch - KØITP Bryan Gonderinger - AFØW

November 20, 2019

Question

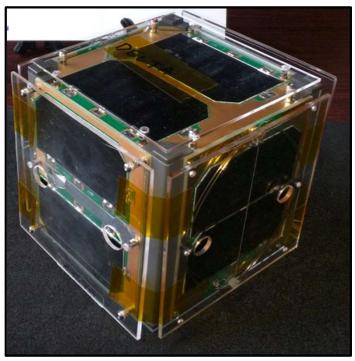
Would you like to make a QSO on a repeater that is 4 inches square, traveling 17,000 MPH, 1,400 miles away using just 5 watts?

- If the answer is "yes," today is your lucky day!
- If no, then take a nap...

Background

- We (Chuck (KØITP) and Bryan (AFØW)) had previously received SSTV transmissions from the ISS
- •We were both interested in communicating via amateur radio satellites
- Chuck suggested we work together to learn the basics so we could later teach others in the club

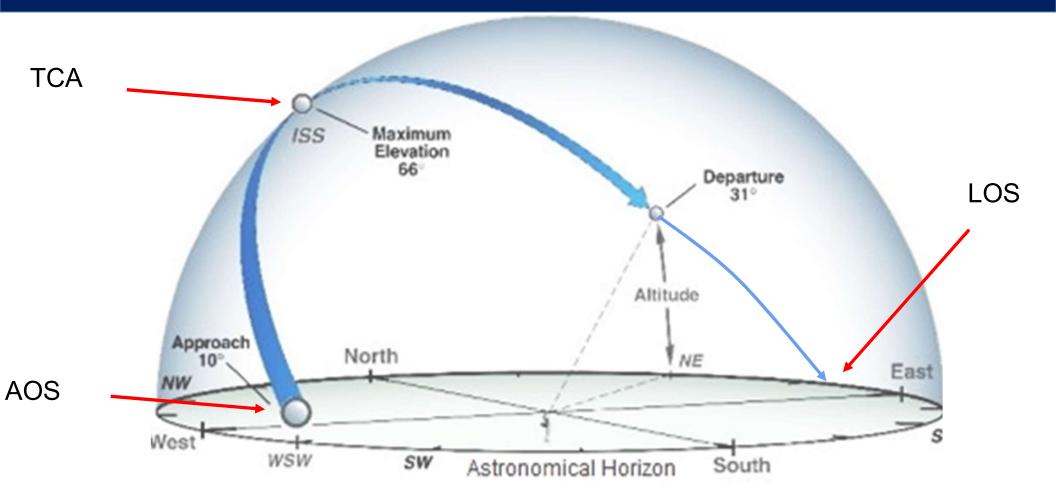
"Learn by Doing"


- •We met on July 27th (a Saturday morning) behind the Clover Building to try it out
- Wanted to see what we could accomplish with minimal equipment and limited knowledge
- Primary goal was to be able to receive satellite voice communications

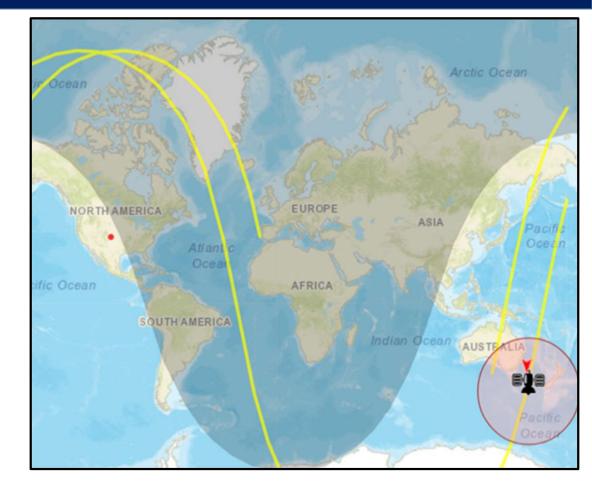
Satellites vs. Ground-Based Repeaters

- Biggest difference is that satellites are in motion
 - Tracking across the sky
 - Not visible all the time
 - Must point antenna
 - Doppler shift in frequencies
 - Tumbling / rotating
 - Must vary polarization of antenna for max signal

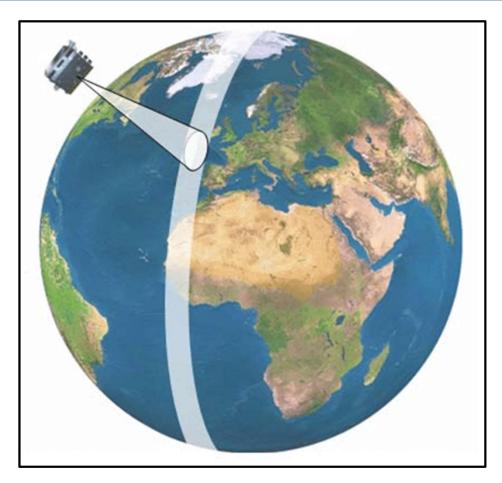
Fox-1D / AO-92


- •1U (10 cm / 4" cube), 1kg/2.2 lbs.
- Available for use Jan 2018
- 2m and 70cm whip antennas
- Power: Solar cells, NiCad battery
- 500 mW (!) EIRP

- AOS: Acquisition of signal / satellite
 Time when satellite rises above the horizon
- •TCA: Time of closest approach Satellite closest to viewer, Doppler shift is 0
- LOS: Loss of signal / satellite Time when satellite sets below the horizon
- Azimuth

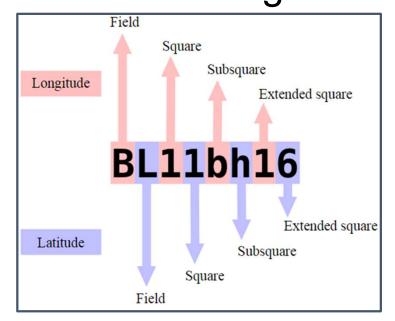

Compass heading (horizontal plane)

Satellite Pass



Ground track

 Path along Earth's surface where satellite passes directly overhead



- Footprint
 - Ground coverage area of satellite's transceivers
 - Stations can communicate if simultaneously within footprint

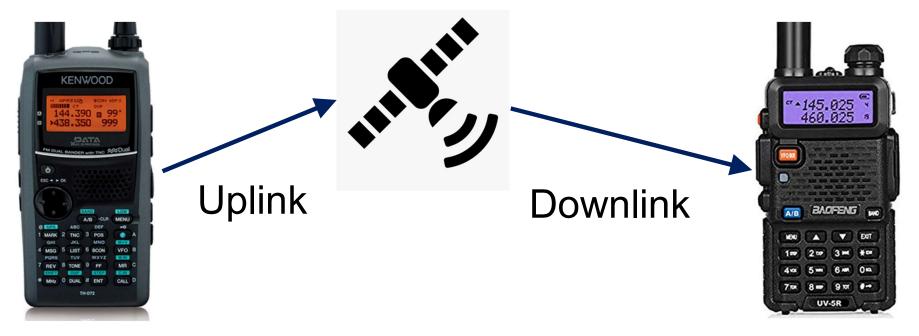
Grid Squares

 Maidenhead grid squares (grid squares) represent a position on the earth based on latitude and longitude

- Can select passes based on grid squares
- Note 2nd pass is much better than 1st and 3rd

Overlapping passes between DN70KD and DM61RT (935km) using AO-92

Searching for 24 hours starting 2019-11-13 at 23:37:55Z


AO-92 - 2019-11-14 03:11:08Z (+2 min 53 seconds)

AO-92 - <u>2019-11-14 04:41:11Z</u> (+9 min 16 seconds)

AO-92 - 2019-11-14 06:17:47Z (+5 min 33 seconds)

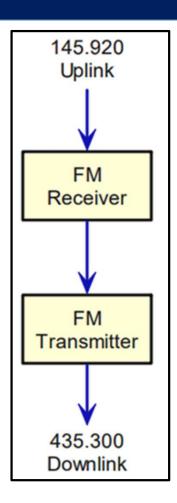
https://www.satmatch.com/

- Uplink: Transmission from ground to satellite
- Downlink: Transmission from satellite to ground

• Doppler shift

 Frequencies vary during pass due to motion of satellite

Band	Shift		
2m	± 3 kHz		
70cm	± 10 kHz		

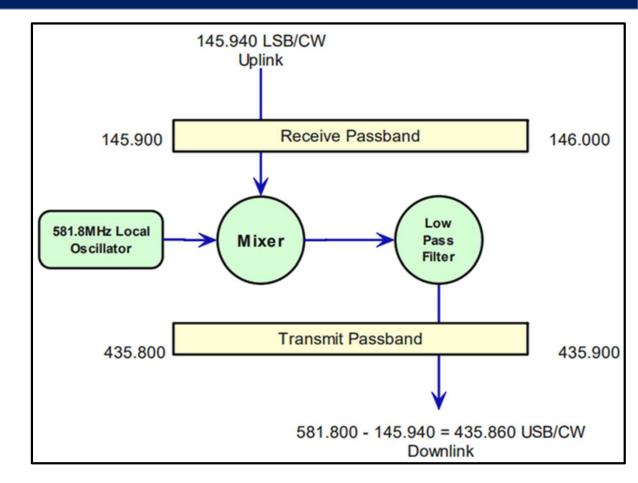

C 2009 Christian Wall

- •Mode
 - U/V, V/U, L/V, etc.
 - Uplink / Downlink
 <u>bands</u>, not modulation

Designator	Band	Frequency
V	2 m	145 MHz
U	70 cm	435 MHz
L	23 cm	1.2 GHz
S	13 cm	2.4 GHz
X	3 cm	10 GHz
K	1.2 cm	24 GHz
R	6 mm	47 GHz

Satellite Transponders

- •FM Repeater
 - Single input frequency retransmitted on single output frequency
 - One QSO at a time
 - Can be worked with HT or mobile


Satellite Transponders

- SSB / CW: Range of input frequencies retransmitted on range of output frequencies
 - Linear: TX goes up, RX goes up
 - Non-Linear: TX goes up, RX goes down
 - Inverting: Modulation not same (e.g. USB on TX, LSB on RX)
- Requires multi-mode radio
- Multiple simultaneous QSOs possible

Satellite Transponders

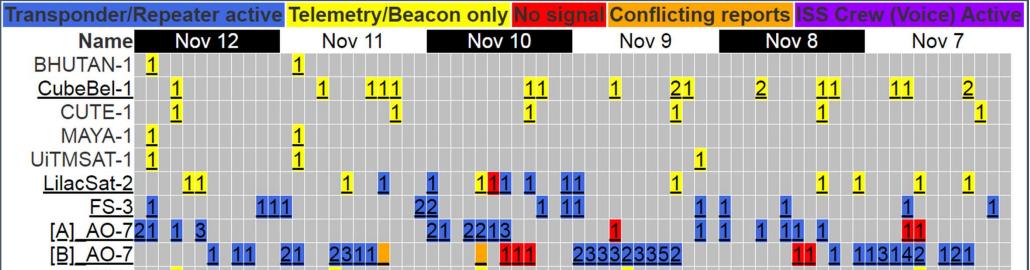
100 KHz wide V/U Inverting Transponder

- 145.94 LSB \rightarrow 435.90 USB
- Signals have bandwidth
 - Leave space
- Output power proportional to input power
 - Use minimum power necessary

Preparation

- Find your grid square
- Determine satellite(s) you want to use
 - Your equipment
 - Capabilities (voice, data, telemetry, beacon)
 - Mode
 - Modulation
- Program frequencies into radio
- Obtain satellite pass information

Your Grid Square


- Can lookup by address or call sign: <u>https://www.levinecentral.com/ham/grid_square.php</u>
- Also shown on your QRZ detail page

Latitude 40.132167 (40° 7' 55" N) Longitude -105.126888 (105° 7' 36" W) Grid Square DN70 kd

Satellite and VHF contests usually use 4 characters

Satellite Selection

- •Links at end of slides for apps / websites
- <u>https://www.amsat.org/status/</u> to determine active satellites

Satellite Selection

 Satellite detail pages to determine operating characteristics

https://www.n2yo.com/?s=25544

• DUV: Data-under-voice FSK data sent along with audio

FOX-1D (AO-92)

Uplink (MHz): 435.350/1267.350 Downlink (MHz): 145.880 Beacon (MHz): 145.880 Mode: FM CTCSS 67.0Hz/200bps DUV Call sign: Status: Active

Program Radio

Use memories with Doppler-shifted frequencies

Memory	Name	TX Freq	TX Tone	RX Freq
911	AOS 2	435.240	67.0	145.960
912	AOS 1	435.245	67.0	145.960
913	AO-91	435.250	67.0	145.960
914	LOS 1	435.255	67.0	145.960
915	LOS 2	435.260	67.0	145.960

Pass Information

- Update Keplerian Elements ("keps" or "TLEs") if using software / app
- These numbers define an ellipse, orient it about the earth, and place the satellite on the ellipse at a particular time

FOX-1D (AO-92)

1 43137U 18004AC 19317.73217739 .00001006 00000-0 44859-4 0 9992 2 43137 97.4727 25.0949 0010903 96.6280 263.6199 15.23708351102036

Pass Information

Visible passes	AM/PM time	UTC Print as PDF				
Start 🛉					End 🔶	
Date, Local ti	me Az	Local tir	ne Az	EI	Local time	Az
12-Nov 20:3	0 ESE 119°	20:34	ENE 67°	12°	20:39	N 13°
12-Nov 22:0	2 S 181°	22:08	W 261°	43 °	22:13	NNW 341°
13-Nov 09:3	1 NE 32°	09:36	E 92°	15°	09:41	SSE 152°

Pass Information

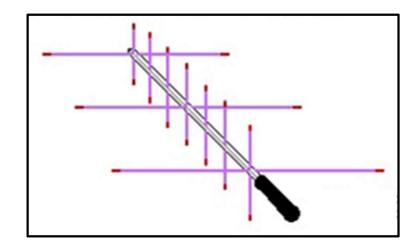
Pass beginning	Max altitude	Pass ending	20:36
Date: 12-Nov 20:30:30	Date: 12-Nov 20:34:50	Date: 12-Nov 20:39:20	North Dakota Minnesota
Az: 119.06° (ESE)	Az: 67.42° (ENE)	Az: 12.66° (N)	South Dakota Wisconsin
El (alt): 0.44°	El (alt): 11.75°	El (alt): 0.59°	South Dakota Iowa 20:34
Mag: -	Mag: -	Mag: -	Nebraska Iowa 20:34
Dist to sat: 2519.1 km	Dist to sat: 1577.8 km	Dist to sat: 2499.6 km	UNITED Illinois Ohio Ph
Eclipsed?: YES	Eclipsed? YES	Eclipsed? YES	STATES StLouis
Invisible pass Add th			

Georgia

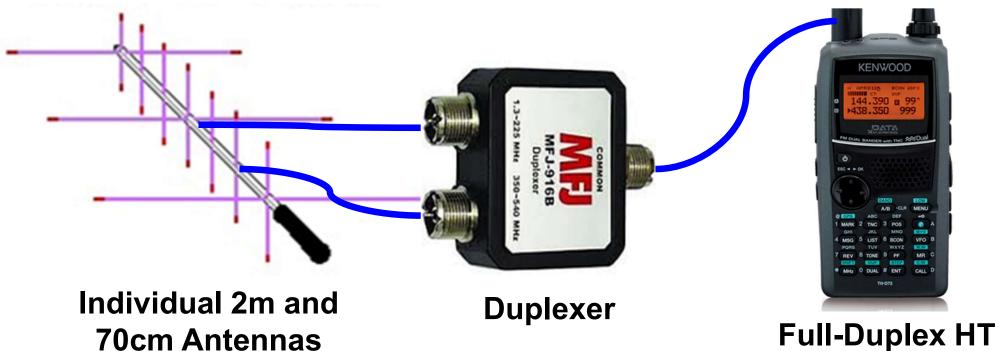
Texas

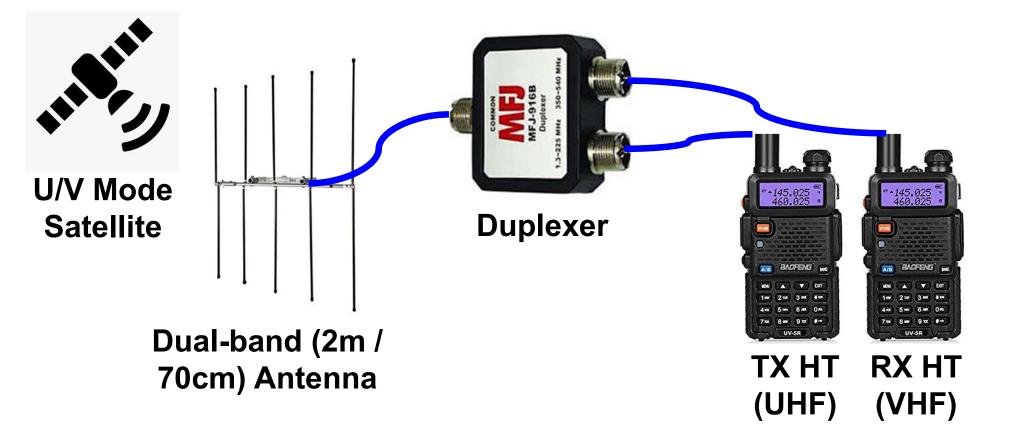
Houston

Equipment

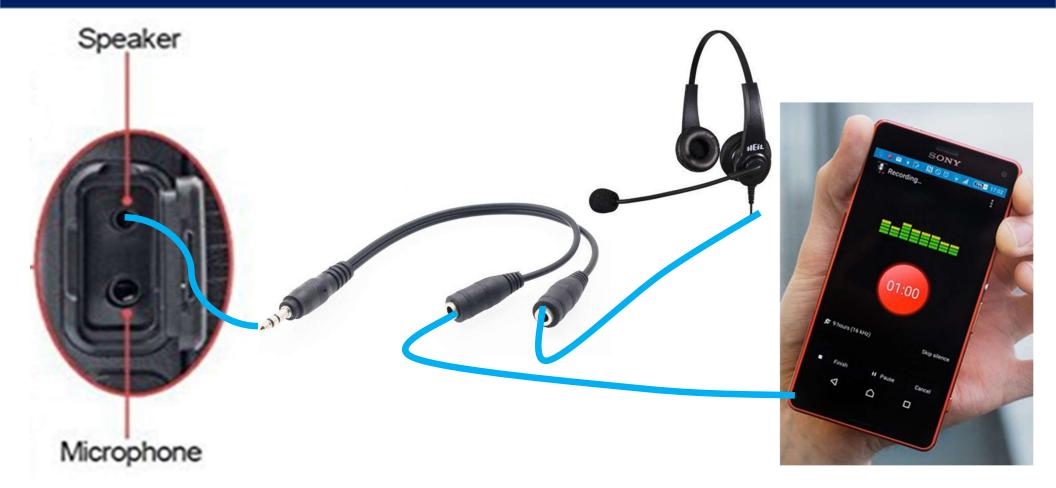

- Basic
 - Dual band (2m / 70cm) HT
- Recommended
 - Yagi antenna
 - Second radio (or duplex-capable radio)
 - Voice recorder
 - Headphones

Radio(s)


- Ideally want to be able to listen to your transmission to make sure you are getting into satellite
 - Requires either duplex-capable radio or a second radio
 - Must be true duplex radio, not "dual watch" (i.e. Baofeng)
- Mobile radios also work, but extra power is not needed for satellites (5 W is plenty!)


- Directional antenna better than omni-directional
- Have to be able to aim and rotate (polarization)
- Can build or buy!
 - Arrow Antennas -Arrow II Satellite Antenna
 - Elk Antennas -2M/440L5 Dual-Band Antenna
 - Tape Measure 2m / 70cm

 Depending on antenna and radio, may need duplexer to split (or join) antenna(s) to radio(s)


Voice Recorder (Optional)

- Passes are short and QSOs are quick!
 - Recording lets you focus on operating and log later
- Helpful if recorder interfaces to PC via USB
 - Faster to transfer audio
- May need splitter to direct audio to recorder and headphones

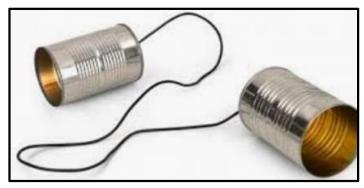
Voice Recorder (optional)

Speaker SONY Meeting 1h23m45s UH/ 30 SONY C Meeting 1h23m45s SCENE DISP PLAY/STOP REC/PAUSE 1EiL ENTER **NOTE:** Radio KK. -MADI speaker jack may be 2.5mm, recorder is likely 3.5 mm Microphone

Voice Recorder (optional)

Headset (optional)

- When listening to your transmission on satellite downlink, don't want to feed back into microphone
 - Headset will prevent this from happening
- Just need headphones (earbuds)
 - Can use radio mic for transmitting
- Sound isolation is good if in noisy surroundings
 - Can use earbuds under "ear muff" hearing protectors


Satellite QSOs

- Due to short passes, usually just exchange call signs and grid squares
 - Don't transmit if you can't hear the satellite
 - Don't call CQ
 - No rag chewing
 - Some satellites require CTCSS
 tone to turn on repeater

Satellite QSO

- W6JW: "W6JW, DM04"
- W1AW: "W6JW, this is W1AW, FN31, QSL?"
- W6JW: "W1AW FN31, Thanks. Echo DM04, QSL?"
- W1AW: "QSL DM04. Thank you, 73"
- W6JW: "QSL, Thank you, 73"

Equipment Used - Chuck

- TYT 7800 mobile with Arrow antenna (w/built-in duplexer)
- Baofeng HT with homemade Yagis & Antenna TW-720D duplexer

Equipment Used - Bryan

- Kenwood TH-D72A HT on handheld Arrow antenna (w/builtin duplexer)
- Voice recorder
- Headphones
- Camera bag for holding HT and recorder

Results

- Accomplished our goal we heard several satellites:
 - NOAA 18 Receive only
 - NOAA 15 Receive only
 - SO-50 Big pile-up

Unfortunately, were not able to make any contacts this time

Lessons Learned

- Not as simple as making terrestrial repeater contacts!
- Improve list of satellites to track and hopefully make contacts
- Having a table was extremely helpful
- Bring shade or at least sunscreen (can still get sunburn with low sunspots!)
- Look for location with no obstructions to horizon

Next Steps...

- Planning another event soon!
- Stay tuned to the LRAC website and emails for additional information
- People did show up and were curious about what we were doing...
 ...and also tried it!

So What Else?

- Other activities using the same equipment
 - SSTV images from ISS (when available)
 - APRS with external TNC
 - Ham nets on terrestrial repeaters
 - Simplex with a friend
 - Take a walk in the mountains & make a QSO
 - Use for a "fox hunt"

Any (easy) questions?

Thanks for listening! Chuck Poch – KØITP Bryan Gonderinger - AØFW

Youtube Videos

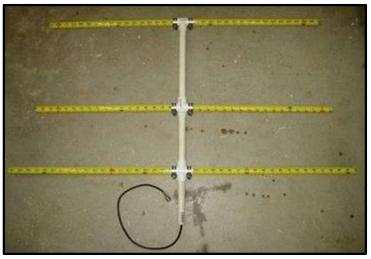
- SO-50 Satellite Contact
 - <u>https://www.youtube.com/watch?v=YFVTtNk_f38</u>
- Ultimate Guide to Working Ham Radio Satellites
 - https://youtu.be/aAE8NiJ6tGA
- The Story Behind the \$50 SAT
 - <u>https://www.youtube.com/watch?v=q00Fm-ij02M</u>

General Satellite Communication Info

- <u>https://www.amsat.org/introduction-to-working-amateur-satellites/</u>
- <u>https://www.onallbands.com/satellite-basics-part-1-guide-to-ham-radio-satellite-operating/</u>
- <u>https://www.onallbands.com/satellite-basics-part-2-making-qsos-via-satellite/</u>
- <u>http://w6jw.org/wp-content/uploads/2019/08/Ham-Radio-Satellites-N6JJ.pdf</u>
- <u>https://spacecomms.wordpress.com/satellite-setup-tips/</u>
- <u>https://makezine.com/2009/07/22/catching-satellites-on-ham-radio/</u>
- Operating the Amateur Radio Satellites
 - https://slideplayer.com/slide/15394303/
- Getting Started with Satellites
 - <u>https://slideplayer.com/slide/14408032/</u>

Satellite Tracking

- <u>https://www.n2yo.com/?s=25544</u>
- http://amsat.org.ar/pass#top
- http://www.satview.org/
- <u>https://www.heavens-above.com</u>
- <u>http://www.satflare.com/track.asp#TOP</u>
- <u>https://in-the-sky.org/satmap_worldmap.php</u>
- <u>https://en.wikipedia.org/wiki/List_of_satellite_pass_predictors</u>
- <u>https://www.amsat.org/amsat-new/tools/softwareArchive.php</u>


Satellite Rotator / Tracking Videos

- <u>https://youtu.be/BDTjnJm41mc</u>
- <u>https://youtu.be/sIE0mcOGnms</u>
- <u>https://youtu.be/00SW1ExS2es</u>
- <u>https://youtu.be/HE09wMaTUpU</u>
- <u>https://youtu.be/K5Xx6K7tM0Y</u>
- <u>https://youtu.be/5p5XiZ_IA98</u>

Antennas for Satellite Communication

- <u>http://www.arrowantennas.com/arrowii/146-437.html</u>
- <u>https://elkantennas.com/product/dual-band-2m440l5-log-periodic-antenna/</u>
- <u>http://w6nbc.com/articles/2011-</u> <u>12QSTtapemeasure.pdf</u>
- <u>https://www.amsat.org/amsat/articles/w6shp/ant_tips.</u> <u>html</u>
- <u>https://www.rfwireless-world.com/calculators/3-</u> element-Yagi-Antenna-Calculator.html
- <u>http://w6nbc.com/articles/2011-</u> <u>12QSTtapemeasure.pdf</u>

Web-Based SDRs for Satellite Reception

- <u>https://vhf-goonhilly.batc.org.uk/</u>
- <u>https://eshail.batc.org.uk/nb/</u>
- <u>http://farnham-sdr.com/</u>

Waterfall: O Java HTML5 Sound: O Java HTML5	ow keyboard: 🔲 🛛 View: 🕯	⊜ all b
ISS <u>Voice/SSTV</u> / <u>Packet</u> Elevation: -56° Range: 1 FUNCUBE-1 <u>Beacon</u> / <u>Transponder</u> Elevation: -38° Range: 8		
	650 143700 143750 143800 14 2 Russiz Uno Uno Uno Uno Uno Uno	
Waterfall view: Hide labels Speed: slow slow You can also click on the waterall and use the mouse scroll wheel	Size: medium ▼ View: wa	terfall
Frequency:	Mode:	
144429.20 kHz + +++ Band: LF 50 • 144 146 433 435 437 3c Cr thus by disting / draging / scrall-based on the frequency scale	CW LSB CW-nrw LSB-nrw	USB USB-n

Keplerian Elements / TLEs

• TLE format description

https://www.celestrak.com/NORAD/documentation/tle-fmt.php

• TLE/Keplerian Element Resources

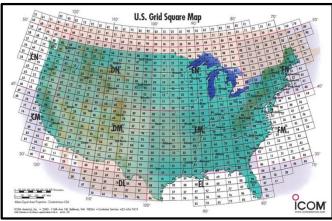
https://www.amsat.org/keplerian-elements-resources/

Keplerian Elements

https://marine.rutgers.edu/cool/education/class/paul/orbit s.html

NORAD TLE Current Data

https://www.celestrak.com/NORAD/elements/


Johannes Kepler

Maidenhead Grid Squares

- VHF Grid Locators http://www.k0nr.com/wordpress/my-articles/vhf-grids/
- Grid Squares http://www.arrl.org/grid-squares
- Maidenhead Locator System
 https://en.wikipedia.org/wiki/Maidenhead Locator System
- GridMaster Map

https://ke4al.wordpress.com/2018/06/29/new-and-improved-gridmaster-map/

Satellite Grid Maps
 https://www.papays.com/sat/gridmaps/gridmaps.html

Misc Satellite-Related Sites

- School Amateur Radio Club Projects (antenna rotator) <u>https://www.sarcnet.org/projects.html</u>
- FoxTelem Software (Fox satellite telemetry decoder) <u>https://www.amsat.org/foxtelem-software-for-windows-</u> <u>m</u>
- ARISS (Amateur Radio on the ISS)
 <u>https://www.ariss.org/</u>

Full Duplex-Capable HTs

- Kenwood TH-D7A, TH-D72A, TH-D78, TH-D79
- Wouxon 8D Plus / 9D Plus (not for SO-50)
 - <u>https://youtu.be/vljeh4tv-i0</u>
- Alinco DJ-580
- ICOM IC-W2a, IC-W31a, IC-W32a
- Yaesu FT-470, FT-51, FT-530

Full Duplex-Capable Mobiles

- Kenwood TM-D710GA, TM-V71A
- Yaesu FT-8800, FT-8900
- ICOM IC-2730A

The End

